
CST207
DESIGN AND ANALYSIS OF ALGORITHMS

Lecture 4: Divide-and-Conquer and Sorting Algorithms 1

Lecturer: Dr. Yang Lu

Email: luyang@xmu.edu.my

Office: A1-432

Office hour: 2pm-4pm Mon & Thur

Outlines

¡ Binary Search

¡ Mergesort

¡ Quicksort

¡ Strassen’s Matrix Multiplication Algorithm

¡ Large Integer Multiplication

¡ Determining Threshold

1

Divide-and-Conquer

¡ The divide-and-conquer algorithm divides an instance of a problem into two or more
smaller instances.
¡ The smaller instance is the same problem as the original instance.

¡ Assume that the smaller instance is easy to solve.

¡ Combine solutions to the smaller instances to solve the original instance.

¡ If the smaller instance is still difficult, divide again until it is easy.

¡ The divide-and-conquer is a top-down approach.
¡ Recursion is usually adopted.

2

BINARY SEARCH

3

Review of Binary Search

Steps:
¡ If 𝑥 equals the middle item, quit.

¡ Otherwise, compare 𝑥 with the middle
item.

¡ If 𝑥 is smaller, search the left subarray.

¡ If 𝑥 is greater, search the right subarray.

4

Non-recursive binary search

Searching subarray
by moving the
index bound

Binary Search with Divide-and-Conquer

¡ Steps:
¡ If 𝑥 equals the middle item, quit. Otherwise:

1. Divide the array into two subarrays about half as large. If 𝑥 is smaller than the middle item, return the result
from the left subarray. Otherwise, return the result from the right subarray.

2. Conquer (solve) the subarray by determining whether 𝑥 is in that subarray. Unless the subarray is sufficiently
small, use recursion to do this.

3. Obtain the solution to the array from the solution to the subarray.

¡ The instance is broken down into only one smaller instance, so there is no combination of
outputs.
¡ The solution to the original instance is simply the solution to the smaller instance.

5

Design Divide-and-Conquer Algorithms

6

¡ When developing a recursive algorithm with divide-
and-conquer, we need to
¡ Develop a way to obtain the solution to an instance from

the solution to one or more smaller instances.
¡ Determine the terminal condition(s) that the smaller

instance(s) is (are) approaching.
¡ Determine the solution in the case of the terminal

condition(s).

¡ Not like the non-recursive version, 𝑛, 𝑆 and 𝑥 are not
parameters to the recursive function.
¡ They ramain unchanged in each recursive call.
¡ Only pass the changing variables to a recursive function.

Worst-Case Time Complexity of Binary Search

¡ The binary search doesn’t have an every-case time complexity.

¡ The recursive equation for the worst-case is:
𝑊 𝑛 = 𝑊 𝑛/2 + 1.

¡ 𝑊 𝑛/2 is the number of comparisons in recursive call.

¡ 1 is the comparison at top level.

¡ By the master method case 2, we have 𝑓 𝑛 = 1 ∈ Θ 1 = Θ 𝑛!"#!$.

¡ Therefore, 𝑊 𝑛 ∈ Θ(lg 𝑛).

7

MERGESORT

8

Sorting Algorithm

¡ A sorting algorithm is an algorithm that puts items of a list in a certain order.

¡ Efficient sorting is important for optimizing the efficiency of other algorithms (such
as search and merge algorithms) that require input data to be in sorted lists.

¡ The output of any sorting algorithm must satisfy two conditions:
1. The output is in nondecreasing order (each item is no smaller than the previous item);

2. The output is a permutation (a reordering, yet retaining all of the original items) of the input.

9

Mergesort

¡ Combine two sorted arrays into one sorted array.

¡ Given an array with 𝑛 items, Mergesort involves the following steps:
1. Divide the array into two subarrays each with 𝑛/2 items.

2. Conquer (solve) each subarray by sorting it. Unless the array is sufficiently small, use recursion to
do this.

3. Combine the solutions to the subarrays by merging them into a single sorted array.

10

11

Example of Mergesort steps

Image source: Figure 2.2, Richard E. Neapolitan, Foundations of Algorithms (5th Edition), Jones & Bartlett Learning, 2014

Mergesort Visualized Demo

12

Image source: https://thumbs.gfycat.com/ZealousAdolescentBellsnake-size_restricted.gif

Pseudocode of Mergesort

13

Merging Process

index 𝑈 (index 𝑖, length ℎ) 𝑉 (index 𝑗, length 𝑚) 𝑆 (index 𝑘, length ℎ + 𝑚)

𝑘 = 1, 𝑖 = 1, 𝑗 = 1 10 12 20 27 30 13 15 22 25 10

𝑘 = 2, 𝑖 = 2, 𝑗 = 1 10 12 20 27 30 13 15 22 25 10 12

𝑘 = 3, 𝑖 = 3, 𝑗 = 1 10 12 20 27 30 13 15 22 25 10 12 13

𝑘 = 4, 𝑖 = 3, 𝑗 = 2 10 12 20 27 30 13 15 22 25 10 12 13 15

𝑘 = 5, 𝑖 = 3, 𝑗 = 3 10 12 20 27 30 13 15 22 25 10 12 13 15 20

𝑘 = 6, 𝑖 = 4, 𝑗 = 3 10 12 20 27 30 13 15 22 25 10 12 13 15 20 22

𝑘 = 7, 𝑖 = 4, 𝑗 = 4 10 12 20 27 30 13 15 22 25 10 12 13 15 20 22 25

𝑘 = 8, 𝑖 = 5, 𝑗 = 5 10 12 20 27 30 13 15 22 25 10 12 13 15 20 22 25 27 30

14

while loop terminates when 𝑗 > 𝑚
𝑖 <= ℎ thus copy all the rest of 𝑈 to the tail of 𝑆

Worst-Case Time Complexity of Merge

¡ For sorting algorithm, the basic operation is
comparison.
¡ Assignment and item exchange is not counted.

¡ All of the items in two arrays are compared.

¡ Totally ℎ +𝑚 − 1 comparisons.
¡ Add each item into 𝑆 after comparison except the last

one.

15

Worst-Case Time Complexity of Mergesort

¡ The recursive equation:
𝑊 𝑛 = 𝑊 ℎ + 𝑊 𝑚 + ℎ +𝑚 − 1.

time to sort 𝑈 time to sort 𝑉 time to merge

¡ By the setting of ℎ = 𝑛/2 and 𝑚 = 𝑛 − ℎ, we have:
𝑊 𝑛 = 𝑊 𝑛/2 +𝑊 𝑛/2 + 𝑛 − 1.

¡ By the master method case 2, we have 𝑓 𝑛 = 𝑛 ∈ Θ 𝑛 = Θ 𝑛!"#!: .

¡ Therefore, 𝑊 𝑛 ∈ Θ(𝑛 lg 𝑛).
¡ Best-case and Average-case complexity for Mergesort is also Θ 𝑛 lg 𝑛 . Why?

16

Space Complexity

¡ An in-place sort is a sorting algorithm that does not use any extra space beyond that
needed to store the input.

¡ The previous version of Mergesort is not an in-place sort because it uses the arrays 𝑈
and 𝑉 besides the input array 𝑆.

¡ New arrays 𝑈 and 𝑉 will be created each time mergesort is called.

¡ The total number of extra array items is 𝑛 + 𝑛/2 + 𝑛/4 +⋯ = 2𝑛.
¡ Exercise: the space usage can be improved to 𝑛. How?

17

The Divide-and-Conquer Approach

¡ Now, you should now better understand the following general description of this approach.

¡ The divide-and-conquer design strategy involves the following steps:
1. Divide an instance of a problem into one or more smaller instances.

2. Conquer (solve) each of the smaller instances. Unless a smaller instance is sufficiently small, use
recursion to do this.

3. If necessary, combine the solutions to the smaller instances to obtain the solution to the original
instance.

¡ Why we say “if necessary” in step 3 is that in algorithms such as binsearch_recursive, the
instance is reduced to just one smaller instance, so there is no need to combine solutions.

18

QUICKSORT

19

Quicksort

¡ Quicksort is developed by British computer scientist Tony Hoare in 1962.

¡ You can know the main property of Quicksort by its name – quick!

¡ When implemented well, it can be about two or three times faster than Mergesort.

20

Quicksort

Steps:
¡ Randomly select a pivot item (conventional use the first item).

¡ Put all the items smaller than the pivot item on its left, and all the items greater
than the pivot item on its right.

¡ Recursively sort the left subarray and right subarray.

21

Image source: http://mrtremblaycambridge.weebly.com/p15-turning-on-a-pivot.html

http://mrtremblaycambridge.weebly.com/p15-turning-on-a-pivot.html

22
Example of Quicksort steps

Image source: Figure 2.3, Richard E. Neapolitan, Foundations of Algorithms (5th Edition), Jones & Bartlett Learning, 2014

Quicksort Visualized Demo

23

Image source: https://en.wikipedia.org/wiki/Quicksort

https://en.wikipedia.org/wiki/Quicksort

Pseudocode of Quicksort

24

Partition Process

𝑖 𝑗 𝑆[1] 𝑆[2] 𝑆[3] 𝑆[4] 𝑆[5] 𝑆[6] 𝑆[7] 𝑆[8]
- - 15 22 13 27 12 10 20 25

2 1 15 22 13 27 12 10 20 25

3 2 15 22 13 27 12 10 20 25

4 2 15 13 22 27 12 10 20 25

5 3 15 13 22 27 12 10 20 25

6 4 15 13 12 27 22 10 20 25

7 4 15 13 12 10 22 27 20 25

8 4 15 13 12 10 22 27 20 25

- 4 10 13 12 15 22 27 20 25

25

initial

finish

pivot

Every-Case Time Complexity of Partition

¡ Every item is compared to the pivot
except itself.

𝑇 𝑛 = 𝑛 − 1

26

Worst-Case Time Complexity of Quicksort

¡ The array is already in nondecreasing order.

¡ In each recursion step, the pivot item is always the smallest item.
¡ No item is put on the left of the pivot item.

¡ Thus, 𝑛 items are divided into 1 and 𝑛 − 1 items.

¡ Recursion equation:
𝑊 𝑛 = 𝑊 0 +𝑊 𝑛 − 1 + 𝑛 − 1

¡ Using recursion tree, we can easily get 𝑊 𝑛 = ! !"#
$

∈ Θ 𝑛$.

¡ Exercise: Draw the recursion tree and use substitution method to prove it.

27

Worst-Case Time Complexity of Quicksort

¡ The closer the input array is to being sorted, the closer we are to the worst-case
performance.
¡ Because the pivot can’t fairly separate two subarrays.

¡ Recursion loses it power.

¡ How to wisely choose the pivot?
¡ Random.

¡ Median of 𝑆[𝑙𝑜𝑤], 𝑆[𝑚𝑖𝑑], and 𝑆[ℎ𝑖𝑔ℎ]. Safe to avoid the worst-case but more comparisons are
needed.

28

Average-Case Time Complexity of Quicksort

¡ The worst-case of Quicksort is no faster than exchange sort (also Θ(𝑛:)) and slower
than Mergesort (Θ(𝑛 log 𝑛)).

¡ How dare it name itself “quick”?
¡ The average-case behavior earns its name!

29

Average-Case Time Complexity of Quicksort

¡ We can’t assume that the input array is uniformly distributed from the 𝑛!
permutations.

¡ To analyze the average-case time complexity, we can add randomization.
¡ Randomly permutate the input array.

¡ Randomly choose the pivot item.

30

Average-Case Time Complexity of Quicksort

¡ By randomization, now the probability of pivot being any item in the array is 1/𝑛.

𝐴 𝑛 = '
!"#

$
1
𝑛 𝐴 𝑝 − 1 + 𝐴 𝑛 − 𝑝 + 𝑛 − 1

𝐴 𝑛 =
2
𝑛'
!"#

$

𝐴 𝑝 − 1 + 𝑛 − 1 try to prove this step

𝑛𝐴 𝑛 = 2'
!"#

$

𝐴 𝑝 − 1 + 𝑛 𝑛 − 1 multiply by 𝑛

(𝑛 − 1)𝐴 𝑛 − 1 = 2'
!"#

$%#

𝐴 𝑝 − 1 + (𝑛 − 1) 𝑛 − 2 apply to 𝑛 − 1

31

Average-Case Time Complexity of Quicksort

𝑛𝐴 𝑛 − 𝑛 − 1 𝐴 𝑛 − 1 = 2𝐴 𝑛 − 1 + 2 𝑛 − 1 subtraction
𝐴 𝑛
𝑛 + 1

=
𝐴 𝑛 − 1

𝑛
+
2 𝑛 − 1
𝑛(𝑛 + 1)

¡ Let 𝑎! =
% !
!&#

,

𝑎! = 𝑎!"# +
2 𝑛 − 1
𝑛(𝑛 + 1) =:

'(#

!
2 𝑖 − 1
𝑖(𝑖 + 1) ≈ 2:

'(#

!
1
𝑖 ≈ 2 ln 𝑛 .

¡ Therefore, 𝐴 𝑛 ≈ 𝑛 + 1 2 ln 𝑛 = 𝑛 + 1 2 ln 2 lg 𝑛 ≈ 1.38 𝑛 + 1 lg 𝑛 ∈ Θ(𝑛 lg 𝑛).

32

Harmonic series

Space Complexity

¡ Quicksort looks like an in-place sort.
¡ No extra arrays are created for storing the temporary values.

¡ The index of the pivot item is created in each recursion call.
¡ That takes storage of Θ(log 𝑛), which equals to the stack depth of recursion.

33

STRASSEN’S MATRIX MULTIPLICATION ALGORITHM

34

Recall Matrix Multiplication

¡ Matrix multiplication
¡ Problem: determine the product of two n×n matrices.
¡ Inputs: a positive integer n, two-dimensional arrays of

numbers A and B, each of which has both its rows and
columns indexed from 1 to n.

¡ Outputs: a two-dimensional array of numbers C, which has
both its rows and columns indexed from 1 to n, containing
the product of A and B.

¡ Recall that if we have two 2×2matrices

𝐴 =
𝑎## 𝑎#&
𝑎&# 𝑎&& and 𝐵 = 𝑏## 𝑏#&

𝑏&# 𝑏&&
,

their product 𝐶 = 𝐴×𝐵 is given by
𝑐'(= 𝑎'#𝑏#(+ 𝑎'&𝑏&(.

35

Average-Case Time Complexity of Matrix Multiplication

¡ It can be easily shown that the time complexity is 𝑇 𝑛 = 𝑛=.
¡ The number of multiplication is 𝑛!.

¡ The number of addition is 𝑛" 𝑛 − 1 = 𝑛! − 𝑛".

¡ In the most inner loop, adding 𝑛 items only needs 𝑛 − 1 times addition.

¡ Strassen proposed a method to make the complexity of matrix multiplication better
than 𝑛=.

36

Strassen’s Matrix Multiplication Algorithm

¡ Suppose we want to product 𝐶 of two 2×2 matrices, 𝐴 and 𝐵, That is,
𝑐## 𝑐#&
𝑐&# 𝑐&& =

𝑎## 𝑎#&
𝑎&# 𝑎&& × 𝑏## 𝑏#&

𝑏&# 𝑏&&
.

¡ Strassen determined that if we let
𝑚# = 𝑎## + 𝑎&& 𝑏## + 𝑏&&
𝑚& = 𝑎&# + 𝑎&& 𝑏##
𝑚) = 𝑎## 𝑏#& − 𝑏&&
𝑚* = 𝑎&& 𝑏&# − 𝑏##
𝑚+ = 𝑎## + 𝑎#& 𝑏&&
𝑚, = 𝑎&# − 𝑎## 𝑏## + 𝑏#&
𝑚- = (𝑎#& − 𝑎&&)(𝑏&# + 𝑏&&)

the product C is given by

𝐶 =
𝑚# +𝑚* −𝑚+ +𝑚- 𝑚) +𝑚+

𝑚& +𝑚* 𝑚# +𝑚) −𝑚& +𝑚,

37

Strassen’s Matrix Multiplication Algorithm

¡ To multiply two 2×2 matrices, Strassen’s method requires 7 multiplications and 18
additions/subtractions.
¡ The standard method requires 8 multiplications and 4 additions/subtractions.

¡ Use 14 more additions/subtractions to save 1 multiplication. It that worthy?

¡ Obviouly, it is not worthy in terms of number multiplication and additions/
subtractions.
¡ However, it is very worthy in terms of matrix multiplication and additions/subtractions.

38

Strassen’s Matrix Multiplication Algorithm

¡ The divided submatrices also follow Strassen’s formula:

𝐶BB 𝐶BC
𝐶CB 𝐶CC

= 𝐴BB 𝐴BC
𝐴CB 𝐴CC

× 𝐵BB 𝐵BC
𝐵CB 𝐵CC

¡ We use recursion and Strassen’s formula to calculate the matrix multiplication until 𝑛 is
sufficiently small.

¡ When 𝑛 is not a power of 2, one simple modification is to add sufficient numbers of columns
and rows of 0s.

39

𝑛/2

𝑛/2

Pseudocode of Strassen’s Matrix Multiplication Algorithm

40

Every-Case Time Complexity Analysis of Strassen’s Matrix Multiplication
Algorithm

¡ In each recursive step, we actually only do addition/subtraction. The multiplication is
passed to the next recursion step.

¡ We need 18 times addition/subtraction for a matrix with 𝑛/2 : items.

¡ Recursion equation:
𝑇 𝑛 = 7𝑇 𝑛/2 + 18 𝑛/2 :

¡ Use the master method case 1, 𝑓 𝑛 = $A
B 𝑛

: ∈ 𝑂(𝑛!"#! CDE) ≈ 𝑂(𝑛:.A$DE) for 𝜖 ≈
0.81.

¡ Therefore, we have 𝑇 𝑛 ∈ Θ(𝑛:.A$).

41

LARGE INTEGER MULTIPLICATION

42

Arithmetic with Large Integers

¡ Suppose that we need to do arithmetic operations on integers whose size exceeds
the computer’s hardware capability of representing integers.
¡ On 32-bit and 64-bit systems, an integer in programming language C is representaed by 4 bytes

¡ -2,147,483,647 ~ 2,147,483,647.

¡ How to do arithmetic for those large integers?

43

Representation of Large Integers

¡ A straightforward way is to use an array, in which each slot stores one digit.

Integer 53241 fills in the array with size 5:

¡ For addition and subtraction, it’s easy to write linear-time algorithms.
¡ You know how addition and subtraction work at the first grade of your primary school.

¡ For multiplication, division and modulo with exponential based on 10, linear-time algorithm
is also easy.
¡ Just add zeros or take out some bits.

¡ For multiplication, it’s also not difficult to write a quadratic algorithms.
¡ Can we use divide-and-conquer to make it faster?

44

5 3 2 4 1

Large Integer Multiplication

¡ Let 𝑛 the number of digits and 𝑚 = 𝑛/2 . If we have two 𝑛-digit integers
𝑢 = 𝑥×10G + 𝑦
𝑣 = 𝑤×10G + 𝑧

their product is given by
𝑢𝑣 = 𝑥×10G + 𝑦 𝑤×10G + 𝑧

= 𝑥𝑤×10:G + 𝑥𝑧 + 𝑤𝑦 ×10G + 𝑦𝑧.

¡ There are 4 multiplications and a few linear operations.

45

Pseudocode of Large Integer Multiplication

46

Worst-Case Time Complexity of Large Integer Multiplication

¡ No digits equal to 0.
¡ Equal to 0 leads early quit from recursion, otherwise pass into the next recursion step.

¡ Recursive equation:
𝑊 𝑛 = 4𝑊 𝑛/2 + 𝑐𝑛

¡ Use the master method case 1, 𝑊 𝑛 ∈ Θ(𝑛:).

¡ It is still quadratic. Why?

47

Improvement of Large Integer Multiplication

¡ We decompose the problem of 𝑛 into 4 𝑛/2 subproblems.

¡ If we can decrease 4 to 3, by the master method we get 𝑊 𝑛 ∈ Θ(𝑛#$%. !).
¡ Now, we need to calculate

𝑥𝑤, 𝑥𝑧 + 𝑦𝑤, 𝑦𝑧
¡ If instead we set

𝑟 = 𝑥 + 𝑦 𝑤 + 𝑧 = 𝑥𝑤 + 𝑥𝑧 + 𝑦𝑤 + 𝑦𝑧
we have

𝑥𝑧 + 𝑦𝑤 = 𝑟 − 𝑥𝑤 − 𝑦𝑧
¡ Then, we only need to calculate

𝑟, 𝑥𝑤, 𝑦𝑧
48

DETERMINING THRESHOLD

49

Determining Thresholds

¡ For matrix multiplication and large integer multiplication, when 𝑛 is small, using
standard algorithm will be even faster.

¡ For Mergesort, using recursive method on small array will also be slower than
quadratic sorting algorithm like exchange sort.

¡ How to determine the threshold?

50

Determining Thresholds

¡ If we have the recursive equation of Mergesort measured by computational time:
𝑊 𝑛 = 32𝑛 lg 𝑛 𝜇𝑠

and exchange sort takes

𝑊 𝑛 =
𝑛 𝑛 − 1

2 𝜇𝑠

¡ We can compare and get the threshold:
𝑛 𝑛 − 1

2 < 32𝑛 lg 𝑛
𝑛 < 591.

51

When Not to Use Divide-and-Conquer

¡ An instance of size 𝑛 is divided into two or more instances each almost of size 𝑛.
¡ 𝑛th Fibonacci term: 𝑇 𝑛 = 𝑇 𝑛 − 1 + 𝑇 𝑛 − 2 + 1.

¡ Worst-case Quicksort is also not acceptable: 𝑇 𝑛 = 𝑇 𝑛 − 1 + 𝑛 − 1.

¡ An instance of size 𝑛 is divided into almost 𝑛 instances of size 𝑛/𝑐, where 𝑐 is a
constant.
¡ E.g. 𝑇 𝑛 = 𝑇 𝑛/2 + 𝑇 𝑛/2 +⋯+ 𝑇(𝑛/2).

52

Conclusion

After this lecture, you should know:
¡ What is the key idea of divide-and-conquer.

¡ How to divide a big problem instance into several small instances.

¡ How to use recursion to design a divide-and-conquer algorithm.

¡ How Mergesort and Quicksort work and what are their complexity.

53

Thank you!

¡ Any question?

¡ Don’t hesitate to send email to me for asking questions and discussion. J

54

