CST207
DESIGN AND ANALYSIS OF ALGORITHMS

Lecture 4: Divide-and-Conquer and Sorting Algorithms 1

Lecturer: Dr. Yang Lu

Email: luyang@xmu.edu.my

Office: A1-432
Office hour: 2pm-4pm Mon & Thur

Outlines

® Binary Search

= Mergesort

= Quicksort

® Strassen’s Matrix Multiplication Algorithm
" Large Integer Multiplication

® Determining Threshold

5 T\

(&0 XIAMEN UNIVERSITY MALAYSIA
ol EMAEERED A&

@) BITASERSE

496 4
\&z==/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

Divide-and-Conquer

" The divide-and-conquer algorithm divides an instance of a problem into two or more
smaller instances.

= The smaller instance is the same problem as the original instance.
= Assume that the smaller instance is easy to solve.
= Combine solutions to the smaller instances to solve the original instance.

= |f the smaller instance is still difficult, divide again until it is easy.

" The divide-and-conquer is a top-down approach.

= Recursion is usually adopted.

5 T\

frgo\ XIAMEN UNIVERSITY MALAYSIA

) AMAERAEZAR

@) BITASERSE

\‘/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

BINARY SEARCH

Review of Binary Search

void binsearch(int n,

const keytype SI[1,

keytype X,

. index& location)

Steps: (.
index low, high, mid;
= |f x equals the middle item, quit. low - 15 high - n:
location

® Otherwise, compare x with the middle while (low <= high && location)
) mid | (Low + high) I;
Item. if (x == S[mid])
location = mid;
= |f x is smaller, search the left subarray. else if (x < SImid])

high = mid - 1; Searching subarray
else ~~ : h

low = mid by moving the
} index|bound

= |f x is greater, search the right subarray.

Non-recursive binary search
@) AN AT HENHER ’

=)\ XIAMEN UNIVERSITY MALAYSIA
BHARE BREE K

(6y) BIIXRFERER

¢
\&&==7 SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

Binary Search with Divide-and-Conquer

= Steps:
= |f x equals the middle item, quit. Otherwise:

1. Divide the array into two subarrays about half as large. If x is smaller than the middle item, return the result
from the left subarray. Otherwise, return the result from the right subarray.

2. Conquer (solve) the subarray by determining whether x is in that subarray. Unless the subarray is sufficiently
small, use recursion to do this.

3. Obtain the solution to the array from the solution to the subarray.

= The instance is broken down into only one smaller instance, so there is no combination of
outputs.

®= The solution to the original instance is simply the solution to the smaller instance.

5 T\

fiza\ XIAMEN UNIVERSITY MALAYSIA
JEPIKRE Bk E S K

(6y) BIIXRFERER

£
\&&==7 SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

) 2 AT HENHYR °

Design Divide-and-Conquer Algorithms

= When developing a recursive algorithm with divide-

and—conquer, we need to index binsearch_recursive (index low, index high)

{
= Develop a way to obtain the solution to an instance from index mid;

the solution to one or more smaller instances.

. . - if (L high
® Determine the terminal condition(s) that the smaller L (Lo =2 2

instance(s) is (are) approaching. else{
mid = |(low + high) I;

® Determine the solution in the case of the terminal

condition(s). - ()\'(1¢-_~.i‘,_us;[$ig])
. . . else 1if (x < S[mid])
= Not like the non-recursive version, n, S and x are not return binsearch recursive(low, mid — 1)
parameters to the recursive function. e -
. . . return binsearch_recursive(mid , high);
= They ramain unchanged in each recursive call. }
® Only pass the changing variables to a recursive function. '

? AXIAMEN UNIVERSITY MALAYSIA

& AMARE RAEES K

@) BITABERR

=/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

M AT EN YR °

Worst-Case Time Complexity of Binary Search

® The binary search doesn’t have an every-case time complexity.

® The recursive equation for the worst-case is:
Wmn)=Wmn/2) + 1.
= W(n/2) is the number of comparisons in recursive call.

= 1 isthe comparison at top level.
= By the master method case 2, we have f(n) =1 € 0(1) = @(nlogzl).
= Therefore, W(n) € 0(lgn).

A=\ XIAMEN UNIVERSITY MALAYSIA

3 o Ay [Ey A, et

) /)
\&z==/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

@) AN AT HENHER ’

MERGESORT

Sorting Algorithm

" A sorting algorithm is an algorithm that puts items of a list in a certain order.

= Efficient sorting is important for optimizing the efficiency of other algorithms (such
as search and merge algorithms) that require input data to be in sorted lists.

® The output of any sorting algorithm must satisfy two conditions:
1. The output is in nondecreasing order (each item is no smaller than the previous item);

2. The output is a permutation (a reordering, yet retaining all of the original items) of the input.

T\

(&0 XIAMEN UNIVERSITY MALAYSIA
ol EMAEERED A&

Gy BIXFERER

\‘/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

) 2 AT HENHYR

Mergesort

= Combine two sorted arrays into one sorted array.

® Given an array with n items, Mergesort involves the following steps:
1. Divide the array into two subarrays each with n/2 items.

2. Conquer (solve) each subarray by sorting it. Unless the array is sufficiently small, use recursion to
do this.

3. Combine the solutions to the subarrays by merging them into a single sorted array.

5 T\

(&0 XIAMEN UNIVERSITY MALAYSIA
ol EMAEERED A&

10

@) BITASERSE

496 4
\&z==/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

27 10 12 20 25 13 15 22

Divide

25 13 15 22

/ Divide \ / Divide \
25 13 15 22

/ Dmde\ / Dmde\ Divide Divide

27 12 25 13 15 22

\Merge / \Merge / Merge Merge

13 25 15 22

\ Merge / Merge

13 15 22 25

Merge

10 12 13 15 20 22 25 27

11

Example of Mergesort steps

Image source: Figure 2.2, Richard E. Neapolitan, Foundations of Algorithms (5th Edition), Jones & Bartlett Learning, 2014

Mergesort Visualized Demo

3 S > 4
44 38 47 15 36 26 27 46 19 50 48

XIAMEN UNIVERSITY MALAYSIA
) BPMARF BREELK

D) BT EEE

/' SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

AT HENESE "

Image source: https://thumbs.gfycat.com/ZealousAdolescentBellsnake-size_restricted.gif

Pseudocode of Mergesort

void merge (int h, int m, const ke
const
{
index i, j, k;
void mergesort (int n, keytype SI[I]) i ;3 - K
{ e D while (i <= h && j <= m){
const int h |_n J, m n h, LJ (gEi} \6{1}){
keytype U[hl, VI ml; - '
copy S[1] through S[h] to U[1] through U[h]; } e
copy S[h+1] through S[n] to V[1] through V[m]; else {
mergesort(h, U); . 1.
mergesort(m, V); $[k! VIjl;
merge(h, m, U, V, S); }]
¥ k
} }
if (i > h)
copy VI[jl through V[m] to S[k] through S[h+m];
ujucopy U[i] through U[h] to S[k] through S[h+m];
}

13

%7 itHNEER

'RA\XIAMEN UNIVERSITY MALAYSIA

) EMAS EAEE AR

(ty) BIIXFEEFR

¢
” SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

Merging Process

U (index i, length h) %4 (|ndex1, length m) S (index k, length h + m)

k=1,i=1,j=1 101220 27 30 3152225
k=2i=2,j=1 10 1220 27 30 13152225 10 12
k=3,i=3,j=1 10 12 20 27 30 13152225 10 12 13
k=4,i=3,j=2 10 12 20 27 30 13 152225 10 12 13 15
k=51=3,j=3 10 12 20 27 30 13 152225 1012 131520
k=6i=4,j=3 10 12 20 27 30 13 1522 25 10 12 13 15 20 22
k=7i=4,j=4 10 1220 27 30 13 152225 10 12 13 152022 25
k=8i=5j =5 10 12 20 27 30 13 1522 25 10 12 13 152022 25 27 30

\ while loop terminates whenj > m
I <= h thus copy all the rest of U to the tail of S

(=T XIAMEN UNIVERSITY MALAYSIA () *) (= e =
-3- 2 TJ"“ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

14

Worst-Case Time Complexity of Merge

<eytype SII S
" For sorting algorithm, the basic operation is b ik
comparison. P=1;9=1; k
- . . while (i h j m){
= Assignment and item exchange is not counted. BRI
. . l ; |
= All of the items in two arrays are compared. o
_ Skl = VIGI;
= Totally h + m — 1 comparisons. , I
k .
= Add eachiteminto S after comparison except the last 3 -
11 1
one. copy VI[jl through VI[m] to S[k]l through S[h+m];
‘-;Hucopy Uli] through U[h] to S[k] through S[h+m];
}

5 T\

(&0 XIAMEN UNIVERSITY MALAYSIA
ol EMAEERED A&

15

@) BITASERSE

496 4
\&z==/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

Worst-Case Time Complexity of Mergesort

" The recursive equation:
Wmn)=wwmth) + Wm) + h+m-1.
l_'_l l_'_l \ Y)

timetosortU timetosortV time to merge

= By the setting of h = [n/2] and m = n — h, we have:
Wm)=w(n/2])) + W([n/2]) +n—1.

= By the master method case 2, we have f(n) =n € 0(n) = @(nlogzz).

= Therefore, W(n) € ©(nlgn).

= Best-case and Average-case complexity for Mergesort is also ©(nlgn). Why?

(XIAMEN UNIVERSITY MALAYSIA
ey BPAREF BRBEBELS K

) BIXKZERER Sw) B AT HENHYE
®) %@fp
3% SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

16

Space Complexity

" Anin-place sort is a sorting algorithm that does not use any extra space beyond that
needed to store the input.

® The previous version of Mergesort is not an in-place sort because it uses the arrays U
and I/ besides the input array S.

= New arrays U and IV will be created each time mergesort is called.

= The total number of extra array itemsisn+n/2 +n/4 + --- = 2n.

= Exercise: the space usage can be improved to n. How?

5 T\

(&0 XIAMEN UNIVERSITY MALAYSIA
ol EMAEERED A&

17

Gy BIXFERER

\‘/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

The Divide-and-Conquer Approach

= Now, you should now better understand the following general description of this approach.

= The divide-and-conquer design strategy involves the following steps:
1. Divide an instance of a problem into one or more smaller instances.

2. Conquer (solve) each of the smaller instances. Unless a smaller instance is sufficiently small, use
recursion to do this.

3. If necessary, combine the solutions to the smaller instances to obtain the solution to the original
instance.

= Why we say “if necessary” in step 3 is that in algorithms such as binsearch recursive, the

instance is reduced to just one smaller instance, so there is no need to combine solutions.

=)\ XIAMEN UNIVERSITY MALAYSIA

o) BPMAS BRAEE LK

&) BIIKERSR

37/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

&M AT RIS 8

QUICKSORT

Quicksort

" Quicksort is developed by British computer scientist Tony Hoare in 1962.
® You can know the main property of Quicksort by its name — quick!

= When implemented well, it can be about two or three times faster than Mergesort.

5 T\

(&0 XIAMEN UNIVERSITY MALAYSIA
ol EMAEERED A&

20

@) BITASERSE

496 4
\&z==/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

Quicksort

Steps:

[Loss [et E

= Randomly select a pivot item (conventional use the first item).

= Put all the items smaller than the pivot item on its left, and all the items greater
than the pivot item on its right.

® Recursively sort the left subarray and right subarray.

(I XIAMEN UNIVERSITY MALAYSIA
ey BMARF BREELAK

21

6y BIIKZERFBR

496 4
\&z==/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

Image source: http://mrtremblaycambridge.weebly.com/p | 5-turning-on-a-pivot.html

http://mrtremblaycambridge.weebly.com/p15-turning-on-a-pivot.html

15 22 12 10 20 25
10 13 12 15 22 27 20 25
10 13 12 15 20 22 2 25
10 12 13 15 20 22 25 27

Example of Quicksort steps

Image source: Figure 2.3, Richard E. Neapolitan, Foundations of Algorithms (5th Edition), Jones & Bartlett Learning, 2014

22

Quicksort Visualized Demo

XIAMEN UNIVERSITY MALAYSIA
JEPIKRE Bk E S K

@) BITAPERSR

7 SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

* T HENEYE 2

Image source: https://en.wikipedia.org/wiki/Quicksort

https://en.wikipedia.org/wiki/Quicksort

Pseudocode of Quicksort

void partition (index low, index high,
index& pivotpoint)
{
void quicksort (index low, index high) index 1, j;
{ keytype pivotitem;
index pivotpoint;
pivotitem = S[low];
if (high > low){ j = low;
partition(low, high, pivotpoint); for (i=low+1; i<=high; i++)
quicksort(low, pivotpoint); if (S[i] < pivotitem){
quicksort(pivotpoint , high); j++;
} exchange S[i] and S[j];
} }
pivotpoint = j;
exchange S[low] and S[pivotpoint];
}

'RA\XIAMEN UNIVERSITY MALAYSIA 24

BHALERE DR %7 HENHYR

{6y BIIXZERFRR

¢
/" SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

Partition Process

pivot

m
- - 15 22 13 27 12 10 20 25 initial

2 | |5 22 E 27 12 10 20 25

.

3 2 15 22 13 27 12 10 20 25

4 2 15 13 22 27 12 10 20 25

5 3 15 13 % 27 12 10 20 25

6 4 15 13 12 7 | 2 o 20 25

7 4 15 13 12 10 2 27 20 25

8 4 15 13 2 1o 2 27 20 25
: 4 10 13 12 |5 2 27 20 25 finish
N TTEy Tt vee y) BIIXFHERSFHR () A AT HANNER i

" Every item is compared to the pivot
except itself.

Tn)=n-1

AN XIAMEN UNIVERSITY MALAYSIA

) BPAEEREELK

{

dex low, index high,
pivotpoint)

i i, J;
keytype pivotitem;

sl
1aex

pivotitem = S[low];

] low;

for (i=low+1; i<=high; i++)
if (S[i] < pivotitem){

J++,
exchange S[i] and SI[j];
}
pivotpoint = j;
exchange S[low] and S[pivotpoint];

(6y) BIIXRFERER

£
\&&==7 SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

@D DR T HANHER

26

Worst-Case Time Complexity of Quicksort

= The array is already in nondecreasing order.

" |n each recursion step, the pivot item is always the smallest item.
= No item is put on the left of the pivot item.

®m Thus, n items are divided into 1 and n — 1 items.
= Recursion equation:
Wmn)=wWO0)+Wmnh-1)+n-1

n(n—-1)

€ O(n?).

= Exercise: Draw the recursion tree and use substitution method to prove it.

= Using recursion tree, we can easily get W(n) =

5 T\

(&0 XIAMEN UNIVERSITY MALAYSIA
ol EMAEERED A&

27

@) BITASERSE

Q &)
\&z==/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

Worst-Case Time Complexity of Quicksort

" The closer the input array is to being sorted, the closer we are to the worst-case
performance.

= Because the pivot can’t fairly separate two subarrays.

= Recursion loses it power.

" How to wisely choose the pivot?

= Random.

= Median of S[low], S|mid], and S[high]. Safe to avoid the worst-case but more comparisons are
needed.

5 T\

(&0 XIAMEN UNIVERSITY MALAYSIA
ol EMAEERED A&

(6, BIIRFERER

496 4
\&z==/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

28

Average-Case Time Complexity of Quicksort

The worst-case of Quicksort is no faster than exchange sort (also ©(n?)) and slower
than Mergesort (B(nlogn)).

" How dare it name itself “quick”?

= The average-case behavior earns its name!

T\

(&0 XIAMEN UNIVERSITY MALAYSIA
ol EMAEERED A&

Gy BIXFERER

\‘/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

29

Average-Case Time Complexity of Quicksort

= We can’t assume that the input array is uniformly distributed from the n!
permutations.

® To analyze the average-case time complexity, we can add randomization.

= Randomly permutate the input array.

= Randomly choose the pivot item.

AT\ XIAMEN UNIVERSITY MALAYSIA

el

t“" . Ale — AL i
ol AR BRBEES K 6y) BIIXRZEERFER

) /)
\&z==/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

&M AT RIS ¥

Average-Case Time Complexity of Quicksort

= By randomization, now the probability of pivot being any item in the array is 1/n.
n

A(n)=Z%[A(p—1)+/1(n—p)]+n—1

p=1
n
2
An) = EZ A(p — 1) + n — 1 (try to prove this step)
p=1

ndA(n) =2 Z A(p — 1) + n(n — 1) (multiply by n)

p=1
n-—1

n—1DAn-1) =2 ZA(p -1+ (n—-—1)(n—2) (applyton —1)
p=1

(XIAMEN UNIVERSITY MALAYSIA
ey BPAREF BRBEBELS K

31

@) BITASERSE

496 4
\&z==/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

Average-Case Time Complexity of Quicksort

nAdn) —(n—1)An—-1) =24(n—1) + 2(n — 1) (subtraction)
An) An—-1) 2n-1)

= +
n+1 n nn+1)

A(n)

" leta, = n+1’ Harmonic series

2n-1) 20-1 Ol /

tn = -1 T L o+ 1) zi(i+1) i nn

= Therefore, A(n) * (n+1)2Inn=(mM+1)2In2lgn = 1.38(n+ 1) lgn € O(nlgn).

(XIAMEN UNIVERSITY MALAYSIA
ey BPAREF BRBEBELS K

) EITARERSR

QD Y,
=/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

) D AT HRNNYR ?

Space Complexity

® Quicksort looks like an in-place sort.

= No extra arrays are created for storing the temporary values.

® The index of the pivot item is created in each recursion call.

= That takes storage of ®(logn), which equals to the stack depth of recursion.

(XIAMEN UNIVERSITY MALAYSIA
ey BPAREF BRBEBELS K

33

@) BITASERSE

496 4
\&z==/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

STRASSEN’S MATRIX MULTIPLICATION ALGORITHM

Recall Matrix Multiplication

= Matrix multiplication
" Problem: determine the product of two n X n matrices.

" |nputs: a positive integer n, two-dimensional arrays of
numbers A and B, each of which has both its rows and
columns indexed from 1 to n.

" Qutputs: a two-dimensional array of numbers C, which has
both its rows and columns indexed from 1 to n, containing
the product of A and B.

m Recall that if we have two 2 X2 matrices

bi1 blzl
by1 byal’

a1 Qa2

A= [
az1 A2

] and B = [
their product C = AXB is given by

Cij = Qi1byj + ajzbyj.

(6y) BIIXRFERER

£
\&&==7 SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

AN XIAMEN UNIVERSITY MALAYSIA

JFPIARS BREESK

void matrixmult(int n,
const number A[]lI[],
onst number B[]I[],
number C[11])
{
index i, j, k;
for (i=1; i<=n; 1i++)
for (j=1; j<=n; j++){
Cl[il[j] ;
for (k=1; k<=n; k++)
Cl[il[j] = CIlil[j]1 + A[il[k]
}
}

Bkl [j1;

) 2 AT HENHYR

35

Average-Case Time Complexity of Matrix Multiplication

= |t can be easily shown that the time complexity is T(n) = n3.

= The number of multiplication is n3.
= The number of addition is n?(n — 1) = n3 — n?.

® |n the most inner loop, adding n items only needs n — 1 times addition.

® Strassen proposed a method to make the complexity of matrix multiplication better

than n3.

36

AN XIAMEN UNIVERSITY MALAYSIA

&l EMAS RAEE S &

&) BIIKERSR

a
\&z==/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

Strassen’s Matrix Multiplication Algorithm

= Suppose we want to product C of two 2X2 matrices, A and B, That is,

[C11 C12]_[a11 a12]x b14 b12]
C21 €2 A1 Ay '

® Strassen determined that if we let

my = (ay; + azz)(b11 + byz)

m, = (az1 + az3)byq

ms3 = ay1(b1y — byy)

My = az2(ba1 — byq)

ms = (a1 + ay2)by;

me = (a1 — ay1)(b11 + by2)

m; = (@12 — Az2)(bag + by3)

the product C is given by

Cz[m1+m4—m5+m7 ms; + ms]

m, + my my; +ms; —m, +mg

5 T\

fiza\ XIAMEN UNIVERSITY MALAYSIA
JEPIKRE Bk E S K

(6y) BMNXFERFR

¢
\&&==7 SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

) D AT HRNNYR ¥

Strassen’s Matrix Multiplication Algorithm

" To multiply two 2X2 matrices, Strassen’s method requires 7 multiplications and 18
additions/subtractions.

= The standard method requires 8 multiplications and 4 additions/subtractions.

= Use 14 more additions/subtractions to save 1 multiplication. It that worthy?

= QObviouly, it is not worthy in terms of number multiplication and additions/
subtractions.

= However, it is very worthy in terms of matrix multiplication and additions/subtractions.

72T\

(&0 XIAMEN UNIVERSITY MALAYSIA
ol EMAEERED A&

Gy BIXFERER

\‘/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

&M AT RIS *®

Strassen’s Matrix Multiplication Algorithm

= The divided submatrices also follow Strassen’s formula:

n/2
nj2] [C11 Ci2] _ [A11 | Axz] « [B11 | B12]
1Co1 1 Coal [Az1 | Azl 7 [Ba1 | Baal

= We use recursion and Strassen’s formula to calculate the matrix multiplication until n is
sufficiently small.

= When n is not a power of 2, one simple modification is to add sufficient numbers of columns
and rows of Os.

5 T\

fiea\XIAMEN UNIVERSITY MALAYSIA

w Ay Ale — A4, prrie
ol AR BRBEES K 6y) BIIXRZEERFER

) /)
\&z==/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

) D AT HRNNYR *

Pseudocode of Strassen’s Matrix Multiplication Algorithm

XIAMEN UNIVERSITY MALAYSIA
JEPIKRE Bk E S K

1

1seq

strassen (int n,
‘,‘.“.: ‘V_ a L AJI
matrix B,

natrixé& C)

F (n threshold)
compute C=AxB with the standard algorithm;

partition A into four submatrices All, Al2, A21, A22;
partition B into four submatrices B11l, B12, B21, B22;

strassen(n/2, A11+A22, B11+B22, M1);
strassen(n/2, A21+A22, B11, M2);

construct C by M1...M7;

ty) BITARERER KT HRNRSS

7 SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

40

Every-Case Time Complexity Analysis of Strassen’s Matrix Multiplication

Algorithm

= |n each recursive step, we actually only do addition/subtraction. The multiplication is
passed to the next recursion step.

= We need 18 times addition/subtraction for a matrix with (n/2)? items.
= Recursion equation:
T(n) = 7T(n/2) + 18(n/2)*

= Use the master method case 1, f(n) = 14—8112 € 0(n'°8277€) = O(n?8179) fore ~
0.81.

= Therefore, we have T(n) € 0(n%%1).

AN XIAMEN UNIVERSITY MALAYSIA 4

&l EMAS RAEE S &

) EITARERSR

a
\&z==/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

Lt

LARGE INTEGER MULTIPLICATION

Arithmetic with Large Integers

® Suppose that we need to do arithmetic operations on integers whose size exceeds
the computer’s hardware capability of representing integers.

= On 32-bit and 64-bit systems, an integer in programming language C is representaed by 4 bytes

= -2,147,483,647 ~ 2,147,483,647.

" How to do arithmetic for those large integers?

(XIAMEN UNIVERSITY MALAYSIA
ey BPAREF BRBEBELS K

43

@) BITASERSE

QD Y,
=/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

= A straightforward way is to use an array, in which each slot stores one digit.

Integer 53241 fills in the array with size 5: 5132 |4]1

= For addition and subtraction, it’s easy to write linear-time algorithms.

= You know how addition and subtraction work at the first grade of your primary school.

= For multiplication, division and modulo with exponential based on 10, linear-time algorithm
is also easy.

= Just add zeros or take out some bits.
= For multiplication, it’s also not difficult to write a quadratic algorithms.

= Can we use divide-and-conquer to make it faster?

72T\

i\ XIAMEN UNIVERSITY MALAYSIA

e v , = P .1 e 44
&) AMAS RREEA® RN %G HRNESR

@) BITASERSE

Q &)
\&z==/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

Large Integer Multiplication

= Let n the number of digits and m = |n/2]. If we have two n-digit integers
u=xx10"+y
v=wx10™ + z
their product is given by

(xxX10™ 4+ y)(wx10™ + z)
xwx10%2™ + (xz + wy)x10™ + yz.

uv

" There are 4 multiplications and a few linear operations.

A=\ XIAMEN UNIVERSITY MALAYSIA

w Ay Ale — A4, prrie
ol AR BRBEES K 6y) BIIXRZEERFER

) /)
\&z==/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

=D E D AT HANHER ®

Pseudocode of Large Integer Multiplication

large_integer prod (large_integer u, large_integer v)
{
arge_integer X, y, w, z;
int n, m;
n = maximum(number of digits in u, number of digits in v);
if (u v)
return 0;
se if (n threshold)
return u * v obtained in the usual way;
seq
m [n |
X = u div m; y = u mod m;
w = v div m; z = v mod m;
eturn prod(x, w) 2m + (prod(x, z) + prod(w, y)) m + prod(y, z);
}
}

* T HENEYE e

{6y BIIXZERFRR

¢
/" SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

JFPIARS BREESK

Worst-Case Time Complexity of Large Integer Multiplication

= No digits equal to O.

= Equal to 0 leads early quit from recursion, otherwise pass into the next recursion step.

= Recursive equation:

Wmn) =4Wn/2) + cn

= Use the master method case 1, W(n) € 0(n?).

= |t is still guadratic. Why?

5 T\

(&0 XIAMEN UNIVERSITY MALAYSIA
ol EMAEERED A&

(6y) BIIXRFERER

) /)
\&z==/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

) 2 AT HENHYR

47

Improvement of Large Integer Multiplication

= We decompose the problem of n into 4 n/2 subproblems.
= |f we can decrease 4 to 3, by the master method we get W (n) € 0(nl°823).
= Now, we need to calculate

XW,XZ + YW, YVZ
= |f instead we set

r=+y)w+2z)=xw+ (xz+yw) + yz
we have
XZ+ YW =71 —XW —YyZ

= Then, we only need to calculate

r,XW,yZ

(6y) BIIXRFERER

) /)
\&z==/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

AT\ XIAMEN UNIVERSITY MALAYSIA

7 2 +3 an 48
Gl EPIAS BREDHK MDA itRNHSR

DETERMINING THRESHOLD

Determining Thresholds

® For matrix multiplication and large integer multiplication, when n is small, using
standard algorithm will be even faster.

" For Mergesort, using recursive method on small array will also be slower than
guadratic sorting algorithm like exchange sort.

= How to determine the threshold?

50

(XIAMEN UNIVERSITY MALAYSIA
ey BPAREF BRBEBELS K

@) BITASERSE

S)
&=~/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

Determining Thresholds

= |f we have the recursive equation of Mergesort measured by computational time:
W(n) =32nlgn us

and exchange sort takes

nn—1
Wn) = (>)us
= We can compare and get the threshold:
nn—1
(>)< 32nlgn
n < 591.

A=\ XIAMEN UNIVERSITY MALAYSIA

w Ay Ale — A4, prrie
ol AR BRBEES K 6y) BIIXRZEERFER

) /)
\&z==/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

T AN AT HRNNER N

When Not to Use Divide-and-Conquer

= An instance of size n is divided into two or more instances each almost of size n.
= nth Fibonacciterm:T(n) =T(n—1)+T(n—2) + 1.
= \Worst-case Quicksort is also not acceptable: T(n) =T(n—1) + n — 1.

= Aninstance of size n is divided into almost n instances of size n/c, where c is a
constant.

= Eg Tn)=TWn/2)+Tn/2)+ -+ T(n/2).

T\

(&0 XIAMEN UNIVERSITY MALAYSIA
ol EMAEERED A&

&) BIIKERSR

o))
\&z==/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

T AN AT HRNNER N

Conclusion

After this lecture, you should know:
= What is the key idea of divide-and-conquer.
= How to divide a big problem instance into several small instances.
= How to use recursion to design a divide-and-conquer algorithm.

= How Mergesort and Quicksort work and what are their complexity.

5 T\

(&0 XIAMEN UNIVERSITY MALAYSIA
ol EMAEERED A&

53

@) BITASERSE

496 4
\&z==/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

Thank youl!

= Any question?

= Don’t hesitate to send email to me for asking questions and discussion. ©

AT\ XIAMEN UNIVERSITY MALAYSIA

el

) BRI B AR

54

@) BITASERSE

3& 4
\&z==/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

